勤俭 / 敬业 / 诚信 / 谨慎

精诚合作 共成大事

搜索图标
  • 集团新闻
  •         石墨材料因具有稳定性高、导电性好、来源广等优点,被认为是目前较为理想的锂电池负极材料。但天然石墨负极比容量及倍率性能不能满足高性能负极材料的需要,为解决这一问题,研究者们对其进行了一系列的改性研究。   本文从石墨负极的改性方法阐述了锂离子电池石墨负极材料的研究进展,并指出了各种改性方法的优缺点,认为通过多种方法协同改性,是综合提高石墨负极材料的有效方法。

            一、前言

            迄今已研究过的碳负极材料有石墨化碳(天然鳞片石墨、石墨化中间相碳微球等)和非石墨化碳(软碳、硬碳等)。其中,石墨以充放电电压平台低、循环稳定性高和成本低等优点,被认为是目前锂离子电池应用中较为理想的负极材料。目前天然石墨的改性研究已经取得了一定的进展,并已有商业化应用。石墨负极一般采用天然鳞片石墨,但存在以下几个缺点:   1鳞片石墨粉具有较大的比表面积,对负极的首次充放电效率有较大影响;   2石墨的片层结构决定了Li+只能从材料端面嵌 入,并逐渐扩散入颗粒内部,由于鳞片石墨的各向异性,Li+扩散路径较长且不均匀,导致其比容量较低;   3石墨的层间距较小,增加了Li+的扩散阻力,且倍率性能较差, 快速充电时Li+易在石墨表面沉积形成锂枝晶,导致严重的安全隐患。   为解决以上鳞片石墨固有的缺点,需要对石墨进行改性,优化负极材料的性能,目前改性方法主要有球形化处理、表面处理和掺杂改性。

            二、球形化处理

            针对鳞片石墨的各向异性导致的锂离子电池负极比容量低的问题,要对鳞片石墨形貌进行改性,使其尽可能达到各向同性的效果。   球形石墨的生产已经产业化,在工业生产中,主要采用风力冲击式整形机进行鳞片石墨的球形化处理。其中,气流涡旋粉碎机是常用的设备,此方法在球化过程中掺杂杂质少,但其设备体积大,且石墨用量大,产率低,在实验室制备中十分受限。   近年,有学者采用小型旋转冲击式磨机进行实验室制备,通过分析球化过程中孔隙率的变化,发现球化过程中能量的增加提高了石墨颗粒的开孔率并降低了其封闭孔隙度,这将影响其电化学性能。除上述干式磨削之外,也有学者采用搅拌磨湿式研磨法,以水作为介质,添加羧甲基纤维素等作为分散剂,以防止石墨颗粒在水中团聚,这种研磨法可以对微晶石墨颗粒进行有效地去棱角化;产物经旋流器和沉降分级后,得到粒级分布窄的颗粒,研究表明经球化分级后,其可逆容量明显提高了约20mAh/g。   除对石墨颗粒本身的整形之外,还可将超细石墨粉通过粘结剂粘结成球形,该方法制备的石墨球具有极好的各向同性。近年,有学者采用葡萄糖作为无定形碳前体和粘结剂,通过喷雾干燥使纳米硅颗粒与石墨颗粒有效黏附在一起,并使超细石墨颗粒团聚成规则球体,使其比容量达到600mAh/g 以上,在一定程度上克服了硅在充放电过程中的容量损失,循环100次后容量保持率 ≥90%。   Wu等借助聚乙烯醇的黏性,通过喷雾干燥将超细石墨粉粘结干燥成各向同性的规则球形颗粒,由于微细石墨间存在的微小孔隙,增加了其循环稳定性,在105次循环后比容量仍保持在367mAh/g,但也由于微孔的存在,首次效率较低为77%;增加柠檬酸碳涂层后,首次效率提高到了80%。此方法对石墨原料的形貌要求不高,形成颗粒的各向同性良好,具有比石墨微粉更稳定的循环性能、更接近372mAh/g的比容量。   通过对鳞片石墨的球形化处理,可明显改善负极材料的比容量(≥350mAh/g),首次循环效率(≥85%)及循环性能 (循环500次后容量保持率≥80%)。作为锂离子电池的负极材料,其粒度d50在16~18μm之间最为合适。如果粒度过小,则比表面积较大,使负极在首次循环过程中消耗大量的Li+,从而形成固体电介质界面膜(SEI膜), 使首次充放电效率低;若粒度过大,则比表面积较小,与电解液接触面积小,影响其负极比容量。

            三、表面处理

            1 改变孔隙结构   石墨的表面孔隙结构是决定电池嵌锂能力的一个重要因素。石墨材料表面微孔的存在可以增加Li+的扩散通道,减小Li+的扩散阻力,从而有效提高材料的倍率性能。   Cheng等将石墨置于强碱(KOH)水溶液中蚀刻,后在氮气气氛中800℃下退火处理,使其表面产生纳米孔隙。这些纳米孔隙可作为Li+的入口, 使Li+不仅可以从石墨端面进入,也可以从基面嵌入,缩短了迁移路径。经测试,以3C的速率充放电,经KOH蚀刻的石墨负极有93%的容量保持率,高于原始石墨(85%);在6C的速率下,可达到74%的容量保持率。   而Shim等比较了原始石墨、KOH蚀刻-退火石墨及80℃条件下KOH蚀刻石墨等